
www.manaraa.com

Computer Science Conference Presentations,
Posters and Proceedings Computer Science

2009

Tisa: A Language Design and Modular Verification
Technique for Temporal Policies in Web Services
Hridesh Rajan
Iowa State University, hridesh@iastate.edu

Jia Tao
Iowa State University

Steve Shaner
University of Central Florida

Gary T. Leavens
University of Central Florida

Follow this and additional works at: https://lib.dr.iastate.edu/cs_conf

Part of the Programming Languages and Compilers Commons

This Conference Proceeding is brought to you for free and open access by the Computer Science at Iowa State University Digital Repository. It has been
accepted for inclusion in Computer Science Conference Presentations, Posters and Proceedings by an authorized administrator of Iowa State
University Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Rajan, Hridesh; Tao, Jia; Shaner, Steve; and Leavens, Gary T., "Tisa: A Language Design and Modular Verification Technique for
Temporal Policies in Web Services" (2009). Computer Science Conference Presentations, Posters and Proceedings. 24.
https://lib.dr.iastate.edu/cs_conf/24

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fcs_conf%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fcs_conf%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/cs_conf?utm_source=lib.dr.iastate.edu%2Fcs_conf%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/cs_conf?utm_source=lib.dr.iastate.edu%2Fcs_conf%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/cs?utm_source=lib.dr.iastate.edu%2Fcs_conf%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/cs_conf?utm_source=lib.dr.iastate.edu%2Fcs_conf%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=lib.dr.iastate.edu%2Fcs_conf%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/cs_conf/24?utm_source=lib.dr.iastate.edu%2Fcs_conf%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Tisa: A Language Design and Modular Verification Technique for
Temporal Policies in Web Services

Abstract
Web services are distributed software components, that are decoupled from each other using interfaces with
specified functional behaviors. However, such behavioral specifications are insufficient to demonstrate
compliance with certain temporal non-functional policies. An example is demonstrating that a patient’s
health-related query sent to a health care service is answered only by a doctor (and not by a secretary).
Demonstrating compliance with such policies is important for satisfying governmental privacy regulations. It
is often necessary to expose the internals of the web service implementation for demonstrating such
compliance, which may compromise modularity. In this work, we provide a language design that enables such
demonstrations, while hiding majority of the service’s source code. The key idea is to use greybox
specifications to allow service providers to selectively hide and expose parts of their implementation. The
overall problem of showing compliance is then reduced to two subproblems: whether the desired properties
are satisfied by the service’s greybox specification, and whether this greybox specification is satisfied by the
service’s implementation. We specify policies using LTL and solve the first problem by model checking. We
solve the second problem by refinement techniques.

Disciplines
Computer Sciences | Programming Languages and Compilers

Comments
The final publication is available at Springer via https://doi.org/10.1007/978-3-642-00590-9_24. Rajan H.,
Tao J., Shaner S., Leavens G.T. (2009) Tisa: A Language Design and Modular Verification Technique for
Temporal Policies in Web Services. In: Castagna G. (eds) Programming Languages and Systems. ESOP 2009.
Lecture Notes in Computer Science, vol 5502. doi: 10.1007/978-3-642-00590-9_24. Posted with permission.

This conference proceeding is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/cs_conf/24

http://dx.doi.org/10.1007/978-3-642-00590-9_24
https://lib.dr.iastate.edu/cs_conf/24?utm_source=lib.dr.iastate.edu%2Fcs_conf%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages

www.manaraa.com

Tisa: A Language Design and Modular Verification
Technique for Temporal Policies in Web Services ?

Hridesh Rajan1, Jia Tao1, Steve Shaner1, and Gary T. Leavens2

(1) Iowa State University, Ames, Iowa, USA
{hridesh,jtao,smshaner}@iastate.edu

(2) University of Central Florida, Orlando, Florida, USA leavens@eecs.ucf.edu

Abstract. Web services are distributed software components, that are decoupled
from each other using interfaces with specified functional behaviors. However,
such behavioral specifications are insufficient to demonstrate compliance with
certain temporal non-functional policies. An example is demonstrating that a pa-
tient’s health-related query sent to a health care service is answered only by a
doctor (and not by a secretary). Demonstrating compliance with such policies is
important for satisfying governmental privacy regulations. It is often necessary to
expose the internals of the web service implementation for demonstrating such
compliance, which may compromise modularity. In this work, we provide a lan-
guage design that enables such demonstrations, while hiding majority of the ser-
vice’s source code. The key idea is to use greybox specifications to allow service
providers to selectively hide and expose parts of their implementation. The over-
all problem of showing compliance is then reduced to two subproblems: whether
the desired properties are satisfied by the service’s greybox specification, and
whether this greybox specification is satisfied by the service’s implementation.
We specify policies using LTL and solve the first problem by model checking.
We solve the second problem by refinement techniques.

1 Introduction

Web services promote abstraction, loose coupling and interoperability of clients and
services [1]. The key idea of web services is to introduce a published interface (often a
description written in an XML-based language such as WSDL [2]), for communication
between services and clients [1]. By allowing components to be decoupled using a
specified interface, web services enable platform-independent integration.
Behavioral Contracts for Web Services. A behavioral contract for a web service
specifies, for each of the web service’s methods the relationships between its inputs
and outputs. Such a contract treats the implementation of the service as a black box,
hiding all the service’s internal states from its clients. The benefit of this encapsulation
is that clients do not depend upon the service’s changeable design decisions. To illus-
trate, consider a healthcare service that allows patients to make appointments and ask
prescription and health-related questions from healthcare practioners [3].

An example JML-like contract [4] for such a service follows.
? Rajan and Tao were supported in part by the NSF grant CNS 06-27354. Rajan, Shaner and

Leavens were supported in part by the NSF grant CNS 08-08913.

www.manaraa.com

2

service Patient {
/*@ requires pId >= 0; ensures result >=0; @*/
int query(int pId, int msg);
/*@ requires qId >= 0; ensures result >=0; @*/
int retrieve(int qId);

}

The service description in this contract is written in a form similar to our language,
Tisa, to make comparisons easier. It specifies that a service named Patientmakes two
web-methods available: query and retrieve. The query method takes a patient
identifier and a message as arguments. The message is represented as an integer for
simplicity (think of it as an index into a table of pre-defined questions, such as “does
the test show I have AIDS?”). The precondition of calling this web-method is that the
patient identifier is positive; the postcondition is that it returns a positive result. The
retrieve method takes a query identifier as argument; its precondition is that this
identifier must be positive. Its postcondition is that the result is also positive. These
contracts could be checked by observing the interface of the web-methods [5–9].
Demonstrating Compliance to Temporal Policies. Let us now consider the following
policy inspired from Barth et al.’s work [3]: “a health question about a patient should
only be answered by the doctor”, “furthermore such answers should only be disclosed to
the concerned patients”. We will refer to these as “HIPAA policies” as they are similar
to regulations in the US health insurance portability and accountability act (HIPAA).
The behavioral contract above is insufficient for demonstrating compliance with the
HIPAA policies, as it does not provide sufficient details about the internal state of the
service. For example, the entity that is finally receiving the query is hidden by query’s
contract. Demonstrating compliance to such policies is important. In our example, a
patient may feel much better about their queries regarding an AIDS test result, if such
compliances were demonstrated by the service.
Compliance and Modularity at Conflict. Alternatively suppose the implementation
of the two web-methods query and retrieve were available, including the compo-
nent services that they use. Then demonstrating compliance to the two HIPAA policies
would be equivalent to ensuring that the implementation avoids non-compliant states.
However, by making code for these methods available, clients might write code that de-
pends on implementation design decisions. As a result, changing these design decisions
will become harder, as these changes could break client’s code [10].

We thus believe that, for web services, modularity [10] and verification of temporal
policies are fundamentally in conflict. To make the service implementation evolvable,
modularity requires hiding the design decisions that are likely to change. But to demon-
strate compliance to key temporal policies, internal states need to be exposed.
A Language Design and Verification Logic. To reconcile these requirements, we pro-
pose a technique based on greybox specifications [11] that exposes only some internal
states. This technique enables web service providers to demonstrate compliance to tem-
poral policies, such that above, by exposing only parts of their implementation. A client
can verify that the service complies with the desired policies by inspecting a greybox
specification. Providers can also choose to hide many implementation details, so the
service’s implementation can evolve as long as it refines the specification [12, 13].

To illustrate, consider the greybox specification shown in Figure 1. This exam-
ple has three services. In each service the methods are web-methods that may be

www.manaraa.com

3

1 service Secretary {
2 int query(int pId, int msg) {
3 preserve pId > 0 && msg > 0;
4 if (msg >= 2) {
5 query(pId,msg)@Doctor
6 }
7 else {
8 /* Appointment? */
9 establish result > 0

10 }
11 }
12 int retrieve(int qId) {
13 requires qId > 0 ensures result > 0
14 }
15 }

16 service Doctor {
17 int query(int pId, int msg) { /* Re: Test */
18 requires pId > 0 && msg >= 2 ensures result > 0
19 }
20 int retrieve(int qId) {
21 requires qId > 0 ensures result > 0
22 }
23 }
24 service Patient {
25 int query(int pId, int msg) {
26 query(pId, msg)@Secretary;
27 }
28 int retrieve(int qId) {
29 preserve qId > 0;
30 if ((qId/1000)==1) { retrieve(qId)@Secretary}
31 else if ((qId/1000)==2) { retrieve(qId)@Doctor}
32 } }

Fig. 1. An Example Greybox Specification

called by clients and other services. Specification expressions of the form preserve
e, establish e, and requires e1 ensures e2 are used within these meth-
ods to hide internal details. The code that is not hidden by specification expres-
sions is exposed. Calls to web-methods are written using an at-sign (@), such as
query(pId, msg)@Secretary. For simplicity, Tisa only allows integers to be
passed as arguments in such remote calls, thus we encode questions using integers: 1
for appointments, 2 for prescriptions, and higher numbers for health-related questions.
Contrary to standard black box specifications, internal states of the service, including
calls to other services are exposed. By analyzing lines 26 and 4–6 (in that order) one
could conclude that “health questions by patients are answered by the doctor.” Demon-
strating compliance to temporal policies thus becomes possible. Note that this specifi-
cation only exposes selected details about the implementation. For example, the spec-
ification of retrieve on line 13 hides all details of how this service responds to
appointment questions. Therefore, it hides the design decisions made in the implemen-
tation of creating, storing, and forwarding responses.
Contributions. An important contribution is the identification of the conflict between
verification of temporal policies and modularity in web services. We show how to re-
solve this conflict using greybox specifications. Our language, Tisa, supports specifica-
tion of policies specified in a variant of linear temporal logic [14], greybox specification
[11] and a simple notion of refinement [12, 13, 15] for modular reasoning about correct-
ness of implementations with respect to such policies. As usual, implementations are
hidden, but policies and greybox specifications are public. To demonstrate these claims,
we present two preliminary verification techniques: one checks if a greybox specifica-
tion satisfies a temporal policy, the second checks whether a service implementation
refines its greybox specification. (The first technique could be used by the clients to se-
lect a service whose specification satisfies their desired policies.) We also show sound-
ness: that the composition of these two verification techniques, applied modularly by
clients and all service providers, implies that the web service implementation satisfies
the specified temporal policies. In practice, some additional technique, such as proof-
carrying code [16] would be needed to satisfy clients that web services in fact satisfy
their specifications.

www.manaraa.com

4

program ::= decl* client
decl ::= classdecl | servicedecl
classdecl ::= class c extends d { field* meth* }
servicedecl ::= service w { field* meth* }
client ::= client w { e }
field ::= t f;
meth ::= t m (form*) { e }
form ::= t var, where var 6=this and var 6=thisSite
t ::= c | int
e ::= n | e == e | e != e | e > e | e < e | e >= e | e <= e
| e + e | e - e | e * e | ! e | e && e | e ‘||’ e | isNull(e)
| if (e) { e } else { e } | new c() | var
| null | e.m(e*) | e.f | e.f = e | cast c e | form = e; e
| e; e | w | m(e*)@e | refining spec { e }

n ∈ N , the set of numeric, integer literals
c, d ∈ {Object, Site} ∪ C,

C is the set of class names
f ∈ F, the set of field names
m ∈ M, the set of method names

var ∈ {this, thisSite} ∪ V,
V is the set of variable names

w ∈ W ⊆ C,
W is the set of web service names

Fig. 2. Abstract syntax, based on [23, Figure 3.1, 3.7].

2 Tisa Language Design

In this section, we describe Tisa, an object-oriented (OO) language that incorporates
ideas from existing work on specification languages, web services authentication lan-
guages and modeling languages. In particular, Tisa’s design is inspired by Argus [17]
and the work of Gordon and Pucella [18]. (Furthermore, some of our descriptions of the
language syntax are adapted from Ptolemy [19].) Tisa is a distributed programming lan-
guage with statically created web services and a single client, each of which has its own
address space. Web services are named and declare web-methods, which can be called
by the client and by other services. As a small, core language, the technical presenta-
tion of Tisa shares much in common with MiniMAO1 [20], a variant of Featherweight
Java [21] and Classic Java [22]. Tisa has classes, objects, inheritance, and subtyping,
but it does not have super, interfaces, exception handling, built-in value types, privacy
modifiers, or abstract methods. Tisa features new mechanisms for declaring policies and
greybox specifications. Our description starts with its programming features, and then
describes its specification features.

2.1 Program Syntax

The syntax of Tisa executable programs is shown in Figure 2 and explained below. A
Tisa program consists of zero or more declarations, and a client (see Figure 3). Decla-
rations are either class declarations or web service declarations.

Each web service has a name (w) representing that web service; thus web service
names can be thought of as web sites. (The mapping of web services to actual computers
is not specified in the language itself.) A web service can be thought of as a singleton
object; however, each web service has a separate address space and its methods can
only be called using a remote procedure call.

An example web service declaration for the service Patient appears on lines 49–
62 in Figure 3. This service contains two web-methods declaration, named query and
retrieve. The web-method query takes a patient Id and message as arguments and
returns a unique query Id generated according to the input arguments. The web-method
retrieve takes query Id as an argument and returns an answer message which en-

www.manaraa.com

5

1 class Query extends Object {
2 int pId; int msg; int qId;
3 }
4 class Queue extends Object { //...
5 int add(int pId, int msg, int qId){
6 /* add to inner list */; qId
7 } }
8 service Secretary {
9 Queue queryQ; Hashtable responses;

10 int ticket; Log log;
11 int query(int pId, int msg) {
12 refining preserve pId > 0 && msg > 0 {
13 log.recordCurrentTime()
14 };
15 if (msg >= 2) {
16 query(pId, msg)@Doctor
17 } else { /* Re: Appointment */
18 refining establish result > 0 {
19 ticket = ticket + 1;
20 queryQ.add(pId, msg, ticket + 1000)
21 } } }
22 int respond(int qId,int pId,int msg){
23 /* Encode patient’s information */
24 responses.add(qId, pId*1000 + msg);
25 queryQ.remove(qId)
26 }
27 int retrieve(int qId) {
28 refining requires qId > 0
29 ensures result > 0 {
30 responses.get(qId)
31 } } }

32 service Doctor {
33 Queue topQ; Queue medQ; Queue lowQ;
34 int query(int pId, int msg) {
35 refining requires pId > 0 && msg >= 2
36 ensures result > 0 {
37 ticket = ticket + 1;
38 if (msg > 500) {
39 topQ.add(pId, msg, ticket + 2000)
40 } else if (msg > 250) {
41 medQ.add(pId, msg, ticket + 2000)
42 } else {
43 lowQ.add(pId, msg, ticket + 2000)
44 };
45 q.qId
46 } }
47 /* retrieve similar to Secretary’s */
48 }
49 service Patient {
50 int query(int pId, int msg) {
51 query(pId, msg)@Secretary
52 }
53 int retrieve(int qId) {
54 if ((qId/1000) == 1) {
55 retrieve(qId)@Secretary
56 } else if((qId/1000) == 2) {
57 retrieve(qId)@Doctor
58 } } }
59 client User{
60 int qid = query(101,3)@Patient;
61 retrieve(qid)@Patient
62 }

Fig. 3. An Example Tisa Implementation

codes a patient Id. A client declares a name and runs an expression that is the main
expression of the program. We next explain class declarations and expressions.
Class Declarations. Class declarations may not be nested. Each class has a name
(c) and names its superclass (d), and may declare finite number of fields (field*) and
methods (meth*). Field declarations are written with a class name, giving the field’s
type, followed by a field name. Methods also have a C++ or Java-like syntax, although
their body is an expression.
Expressions. Tisa is an expression language. Thus the syntax for expressions includes
integer literals, various standard integer and logical operations, several standard OO
expressions and also some expressions that are specific to web services. The logical
operations operate on integers, with 0 representing false, and all other integer values
representing true. An if (e1) { e2 } else { e3 } expression tests if e1 is non-
zero; if so it returns the value of e2, otherwise it returns the value of e3.

The standard OO expressions include object construction (new c()), variable deref-
erence (var, including this), field dereference (e.f), null, cast (cast t e), assign-
ment to a field (e1.f = e2), sequencing (e1; e2), casts and a definition block (t var =
e1; e2). The other OO expressions are standard [23, 20].

There are three new expressions: web service names, web-method calls, and refin-
ing statements. Web service names of form w are constants. A web-method call has the
form (m(e*)@ew), where the expression following the at-sign (ew) denotes the name
of the web service name that will execute the web-method call named m with formals

www.manaraa.com

6

specification ::= servicespec*
servicespec ::= service w { wmspec* }
wmspec ::= t m (form*) { se }
form ::= t var, where var 6=thisSite
spec ::= requires sp ensures sp

se ::= sp | spec | se; se| form = se; se | m(sp*)@sp
| if (sp) { se } else { se }

sp ::= n | sp == sp | sp != sp | sp > sp | sp < sp | sp >= sp | sp <= sp
| sp + sp | sp - sp | sp * sp | ! sp | sp && sp | sp ‘||’ sp
| var | w

Fig. 4. Syntax for Writing Specifications in Tisa

e*. A refining statement, of the form refining spec { e }, is used in imple-
menting Tisa’s greybox specifications (see below). It executes the expression e, which
is supposed to satisfy the specification spec (see Figure 4).

2.2 Specification Constructs

The syntax for writing specifications in Tisa is shown in Figure 4. In this figure, all
nonterminals that are used but not defined are the same as in Figure 2. Specifications
consist of several service specifications (servicespec). (Since we only permit integers
to be sent to and returned from web-method calls, we omit class declarations from
specifications.) A service specification may contain finite number of web-method spec-
ifications (wmspec). All fields are hidden, so field declarations are not allowed in a ser-
vice specification. The body of a web-method specification contains a side-effect free
expression (se). Many expressions from Figure 2 also appear as such side-effect free
expressions, but not field-related operations, method calls, and isNull. Web-method
call expressions are allowed and so are local variable definition expressions.

The main new feature of specifications, borrowed from the refinement calculus and
the greybox approach, is the specification expression (spec). Such an expression hides
(abstracts from) a piece of code in a correct implementation. The most general form of
specification expression is requires sp1 ensures sp2, where sp1 is a precondition
expression and sp2 is a postcondition. Such a specification expression hides program
details by specifying that a correct implementation contains a refining expression
whose body expression, when started in a state that satisfies sp1, will terminate in a
state that satisfies sp2 [15].

In examples we use two sugared forms of specification expression. The expression
preserve sp is sugar for requires sp ensures sp and establish sp is sugar
for requires 1 ensures sp.

An example greybox specification of the web service Patient appears in Figure 1.
The specification of the web-method query appears on line 26, and specifies (and
thus exposes) all the code for that method. The specification of retrieve hides a
bit more in its preserve expression (line 29). But it also exposes code that makes
a web-method call retrieve to the Secretary or Doctor. With these greybox
specifications, enough details are exposed about what the service does when invoking
other services, which makes it feasible to show compliance to the HIPAA policies.

2.3 Constructs for Specifying Policies
Our simple policy specification language is similar to Linear Temporal Logic [14].

Φ(specification) ::= P(specification) | ¬φ | φ1 ∧ φ2 | φ1 U φ2 | X φ

www.manaraa.com

7

The language specifies histories that are sequences of web method calls. For a given
specification, a policy can be an atomic proposition in P(specification); a negation of a
policy or boolean combination of policies. For simplicity here we take the set of legal
propositionsP(specification) to be all legal web-method calls in the given specification.
This set can be statically computed from the specification against which the policy is to
be verified by traversing the abstract syntax tree of the specification up to the depth of
web-method specifications. The operator U is read as “until” and X as “next.” φ1Uφ2

states that policy φ2 must be satisfied after policy φ1 is satisfied along all executions of
the service. Xφ states that policy φ must be satisfied in the next state (i.e., at the next
web method call). We also use the following common abbreviations:

φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2) φ1 → φ2 ≡ ¬φ1 ∨ φ2 true ≡ φ ∨ ¬φ
false ≡ ¬true F φ ≡ true U φ G φ ≡ ¬F ¬φ

The constant true means that the service does not have any obligation. The operator F
is read as “eventually" and G as “always". Below we present two sample policies for
our healthcare service example.

φ1 = G(query@Patient ∧ (XF(query@Secretary ∨ XFquery@Doctor)))
φ2 = G(retrieve@Patient ∧ XFretrieve@Doctor → ¬ XFretrieve@Secretary)

The policy φ1 states that whenever there is a web-method call query@Patient, there
is eventually a web-method call query at one of the sites Secretary or Doctor.
This policy says that a query is eventually delivered to one of the healthcare providers.
The policy φ2 encodes the constraint that a health answer that comes from doctors goes
directly to the patient, and is never forwarded to secretaries. In terms of the service
specification, if there is a web-method call retrieve@Patient and it is followed
by a web-method call retrieve@Doctor, then there is never a web-method call
retrieve at the site Secretary in the same trace.

2.4 Dynamic Semantics of Tisa’s Constructs

This section defines a small step operational semantics for Tisa programs (adapted from
Clifton’s work [23]). In the semantics, all declarations are formed into a single class
table that maps class names and web service names to class and service declarations,
respectively. However, despite this global view of declarations, the model of storage is
distributed, with each web service having an independent store.

The operational semantics relies on four expressions, not part of Tisa’s surface syn-
tax, to record final or intermediate states of the computation. The loc expression repre-
sents locations in the store. The under expression is used as a way to mark when the
evaluation stack needs popping. The evalbody and evalpost are used in evalua-
tion of specification expressions. The three exceptions NullPointerException,
ClassCastException, and SpecException record various problems orthogo-
nal to the type system.

A configuration in the semantics contains an expression (e), an evaluation stack
(J), and a store (S). The current web service name is maintained in the evaluation
stack under the name thisSite. The auxiliary function thisSite extracts the current
web service name from a stack frame. Stacks are an ordered list of frames, each frame
recording the static environment, ρ, and a type environment. (The type environment,Π ,

www.manaraa.com

8

Evaluation relation: ↪→: Γ → Γ

(WEB METHOD CALL)
Π = {vari : var ti | 1 ≤ i ≤ n}∪−{this : var c2}∪−{thisSite : var Site} ν = frame ρ Π

ρ = {vari 7→ vi | 1 ≤ i ≤ n} ⊕ (this 7→ loc)⊕ (thisSite 7→ w)
(loc, c2, t m(t1var1, . . . tnvarn){e}) = find(w,m)

〈E[m(v1, . . . , vn)@w], J, S〉 ↪→ 〈E[under e], ν + J, S〉

(REFINING)
n 6= 0˙

E[refining requires n ensures e
′ {e′′}], J, S

¸
↪→

˙
E[evalbody e′′e′], J, S

¸
(EVALBODY)
ρ = envOf (ν) Π = tenvOf (ν) w = thisSite(ν) t = typeOf (v, S, w)
ρ
′
= Π∪−{result : v} Π

′
= Π∪−{result : var t} ν

′
= frame ρ′

Π
′˙

E[evalbody v e
′
], ν + J, S

¸
↪→

˙
E[under evalpost v e

′
], ν

′
+ ν + J, S

¸
(EVALPOST)

n 6= 0

〈E[evalpost v n], J, S〉 ↪→ 〈E[v], J, S〉

(UNDER)
〈E[under v], ν + J, S〉

↪→ 〈E[v], J, S〉

Fig. 5. Operational semantics of Tisa. Standard OO rules are omitted.

is only used in the type soundness proof.) The static environment ρ maps identifiers to
values. A value is a number, a web service name (site), a location, or null. Stores are
maps from locations to storable values, which are object records. Object records have a
class and also a map from field names to values.

The semantics is presented as a set of evaluation contexts E and an one-step reduc-
tion relation [24] that acts on the position in the overall expression identified by the
evaluation context as shown in Figure 5. Standard OO rules are presented in our techni-
cal report [25]. The key rule is (WEB METHOD CALL), which uses the auxiliary function
find to retrieve the body of the web method from a class table CT implicitly used
by the semantics. It creates the frame for execution of the web method with necessary
static environment and type environment and starts execution of the web method body.
The under e expression is used in the resulting configuration to mark that the stack
should be popped when the evaluation of e is finished.

Evaluation of a refining expression involves 3 steps. First the precondition is
evaluated (due to the context rules). If the precondition is non-zero (i.e., true), then the
next configuration is evalbody e′′ e′, where e′′ is the body and e′ is the postcondition
(regarded as an expression). The body is then evaluated; if it yields a value v, then
the next configuration is under evalpost v e′, with a new stack frame that binds
result to v pushed on the stack. The type of result in the type environment Π ′ is
determined by the auxiliary function typeOf . Finally, the (EVALPOST) rule checks that
the postcondition is true and uses the body’s value as the value of the expression.

3 Verification of Policies in Tisa

A key contribution of our work is to decouple, with Tisa’s language design, the verifi-
cation of whether a policy is satisfied by a web service implementation into two veri-
fication tasks that can proceed modularly and independently. The first task is to verify

www.manaraa.com

9

whether a policy is satisfied by the service specification. The second task is to ver-
ify whether the service specification is satisfied by the service implementation. Three
benefits follow from this modular approach. First, the service implementation need not
be visible to clients, as a client uses the specification to determine whether their de-
sired policies hold. Thus, our approach achieves modularity for service implementa-
tions. Second, regardless of the number of clients, the second verification task must
only be done once; thus our approach is likely to be scalable for web service providers.
Last but not the least, policy verification is performed on the (generally smaller) speci-
fication. Thus, our approach has efficiency benefits for policy verification.

Determining whether a policy is satisfied by the specification can be reduced to a
standard model checking problem [14]. We claim no contribution here; rather, the nov-
elty of our approach is in a combination of these two techniques, enabled by a careful
language design. To show the feasibility of applying ideas from model checking [14]
and refinement calculus [12, 13] to our problem, in the rest of this section we describe
our techniques for verifying policies and refinement.

3.1 Verifying Policies

We adopt the standard automata-theoretic approach for verifying linear temporal logic
formulas proposed by Vardi and Wolper [26] to verify policies in Tisa. Following Vardi
and Wolper [26], a policy φ ∈ Φ(S) is viewed as a finite-state acceptor and a specifica-
tion S as a finite-state generator of expression execution histories. Thus the specification
S satisfies policy φ if every (potentially infinite) history generated by S is accepted by
φ, in other words, if S ∩ ¬φ is empty.

Figure 6 shows main parts of an algorithm for constructing a finite-state machine
F(S) = (Z, z0, R, ∆) from a Tisa specification S. Here, Z is a finite set of states, z0
is the initial state, R is a total accessibility relation, ∆ : Z → 2P(S), which determines
how truth values are assigned to propositions in each state [26, pp. 5]. All rules make
use of unions for joining set of states (Z) and disjoint union (]) for joining propositions.
Rules for standard OO expressions are omitted.

The (IF EXP FSM) rule demonstrates creation of non-deterministic transitions in the
state machine. It computes the FSMs corresponding to the true branch and the false
branch of the if expression with initial states z′ and z′′ and joins these two FSMs to
make a new FSM with initial state z. Corresponding to the state z′, which corresponds
to the true branch, the proposition sp is added to ∆, which corresponds to the condi-
tional expression evaluating to the truth value true. Similarly for the state z′′, which
corresponds to the false branch, the proposition !sp is added to ∆, which corresponds
to the conditional expression evaluating to the truth value false.

The (SPEC EXP FSM) rule models the cases for satisfaction of precondition and post-
condition. The (WEB METHOD CALL FSM) rules make use of a table NT that maps pairs
of web service names and method names (w,m) to states. This table is used to account
for recursion in web-method calls. Finally, the finite-state machine for a service spec-
ification is created by first creating finite-state machines for each of its web-method
specifications as if it is being called and by joining them using an extra state that be-
comes the new initial state.

www.manaraa.com

10

Production relation: NT ` se (Z, z0, R,∆),NT whereNT ∈ NT =W ×M→ Z

(IF EXP FSM)
NT ` se′ (Z

′
, z

′
, R

′
, ∆

′
),NT′ NT′ ` se′′ (Z

′′
, z

′′
, R

′′
, ∆

′′
),NT′′

Z = Z
′ ∪ Z′′ ∪ {z}

∆ = ∆
′]∆′′] {(z′

, {sp}), (z′′
, {!sp})} R = R

′ ∪ R′′ ∪ {(z, z′
), (z, z

′′
)}

NT ` if (sp) {se′} else {se′′} (Z, z,R,∆),NT′′

(WEB METHOD CALL FSM 1)
¬(∃z :: NT(w,m) = z)

NT′
= NT ∪ ((w,m), z) m(t1, . . . tn){se} = find(w,m) NT′ ` se (Z

′
, z

′
, R

′
, ∆

′
),NT′′

Z = Z
′ ∪ {z} ∆ = ∆

′] {(z′
, {m@w})} R = R

′ ∪ {(z, z′
)}

NT ` m(v1, . . . , vn)@w (Z, z,R,∆),NT′′

(WEB METHOD CALL FSM 2)
z = NT(w,m)

NT ` m(v1, . . . , vn)@w ({z}, z, {}, {}),NT

(SPEC EXP FSM)
Z = {z1, z2, z3, z4} R = {(z, z1), (z, z2), (z1, z3), (z1, z4), (z3, z′

)}
∆pre = {(z1, {sp1}), (z2, {!sp1})} ∆ = ∆pre] {(z3, {sp1, sp2}), (z4, {sp1, !sp2})}

NT ` requires sp1 ensures sp2 (Z, z,R,∆),NT

Fig. 6. Finite-state machine construction, built from expressions in a specification.

Given the FSM F(S) we construct a Büchi automaton [27], B(¬φ) for the policy
φ ∈ Φ(S) as shown by Vardi and Wolper [26]. Specification S satisfies the policy φ if
F(S) ∩ B(¬φ) is empty.

3.2 Verifying Refinement

Our technique for checking whether a program refines a specification in Tisa is similar
to the work of Shaner, Leavens and Naumann [15]. An implementation refines a specifi-
cation if it meets two criteria: first, that the code and specification are structurally similar
and second, that the body of every refining expression obeys the specification it is
refining. By structural similarity we mean that for every non-specification expression
in the specification, the implementation has the identical expression at that position in
the code. This is checked in a top-down manner as shown in Figure 7. The operational
semantics rules (REFINING), (EVALBODY) and (EVALPOST) ensure that the body of every
refining expression obeys the specification it is refining.

3.3 Soundness of Verification Technique

The proof of soundness of our verification technique uses the following three defini-
tions.

Definition 1 (A Path for S). Let S be a specification and F(S) = (Z, z0, R, ∆)
be the FSM for S constructed using algorithm shown in Figure 6. A path t for S is a
(possibly infinite) sequence of pairs (zi, ∆(zi)) starting with pair (z0, ∆(z0)), where
for each i ≥ 0, zi ∈ Z and (zi, zi+1) ∈ R.

www.manaraa.com

11

(PROGRAM REF)
∀i ∈ {1..m} ∃j ∈ {1...n} declj ∈ servicedecl ∧ servicespeci v declj

servicespec1 . . . servicespecm v decl1 . . . decln

(SP REF)
sp = e

sp v e

(SERVICE REF)
∀i ∈ {1..m} ∃j ∈ {1...n} wmspeci v methj

servicew {wmspec1 . . . wmspecn}
v servicew {field1 . . . fieldf meth1 . . .methn}

(WEB METHOD REF)
se v e

tm(form1 . . . formn) {se}
v tm(form1 . . . formn) {e}

(SEQ EXP REF)
se1 v e1 se2 v e2

se1; se2
v e1; e2

(IF EXP REF)
sp v eb seT v eT seF v eF

if (sp) {seT } else {seF }
v if (eb) {eT } else {eF }

(DEF EXP REF)
sp v einit se v ebody

form = sp;se
v form = einit;ebody

(WEBCALL EXP REF)
(∀i ∈ {1..n} :: spi v ei) spw v ew

m(sp1, . . . , spn)@spw v m(e1, . . . , en)@ew

(SPEC EXP REF)
(requires sp1 ensures sp2) = spec

requires sp1 ensures sp2 v refining spec {e}

Fig. 7. Inference rules for proving Tisa refinement.

Definition 2 (A Path for P). Let P be a program and CFG(P) = (Z ′, z′0, R
′, ∆′)

be an annotated control flow graph for P , where Z ′ is the set of nodes representing
expressions in program, R′ is the control flow relation between nodes, and ∆′ : Z ′ →
2P(P) is such that for each z′i ∈ Z ′, if it represents a web-method call expression
m(..)@w then (z′i, {m@w}) ∈ ∆′. A path t′ for P is a (possibly infinite) sequence of
pairs (z′i, ∆(z′i)) starting with pair (z′0, ∆(z′0)), where for each i ≥ 0, z′i ∈ Z and
(z′i, z

′
i+1) ∈ R′.

Definition 3 (Path Refinement). Let t be a path for S and t′ be a path for P . Then t
is refined by t′, written t v t′, just when one of the following holds:

– t ≡ t′ i.e., for each i ≥ 0, (zi, δi) ∈ t and (z′i, δ
′
i) ∈ t′ implies zi = z′i and δi = δ′i,

– t = (z, δ) + t1 and t′ = (z′, δ′) + t′1 and δ ⇒ δ′ and t1 v t′1,
– t = (z, δ) + t1 and t′ = (z′1, δ

′
1) + . . .+ (z′n, δ

′
n) + t′1 and δ ⇒ (δ′1] . . .] δ′n) and

t1 v t′1, or
– t = t1 + t2 and t′ = t′1 + t′2 and t1 v t′1 and t2 v t′2.

Lemma 1. Let P ∈ program and S ∈ specification be given. If P refines S, then for
each path t′ for P there exists a path t for S such that t v t′.

Proof Sketch: The proof for this lemma follows from structural induction on the
refinement rules shown in Figure 7. Details are contained in Section A.

Lemma 2. Given a specification S and a policy φ ∈ Φ(S), the automaton F(S) ∩
B(¬φ) accepts a language, which is empty when the specification satisfies the policy.

The proof of this lemma follows from standard proofs in model checking, in particular,
from Lemma 3.1, Theorem 2.1 and Theorem 3.3. given by Vardi and Wolper [26, pp.
4,6]. Details are contained in Section A.

www.manaraa.com

12

Theorem 1. Let S be a specification, φ be a policy in Φ(S), and P be a program. Let
φ be satisfied by the specification S and P be a refinement of S (as defined in Figure 7).
Then the policy φ is satisfied by the program P .

Proof Sketch: The proof follows from lemma 1 and 2. From lemma 1, we have
that each path in the program refines a path in the specification. From lemma 2 and
the assumptions of this theorem, we have that φ is satisfied on all paths in S. Thus, φ,
which is written over P(S), is also satisfied for P .

4 Related Work

In this section, we discuss techniques that are closely related to our approach.
Greybox specifications. We are not the first to consider greybox specifications [11] as
a solution for verification problems. Barnett and Schulte [28, 29] have considered using
greybox specifications written in AsmL [30] for verifying contracts for .NET frame-
work. Wasserman and Blum [31] also use a restricted form of greybox specifications
for verification. Tyler and Soundarajan [32] and most recently Shaner, Leavens, and
Naumann [15] have used greybox specifications for verification of methods that make
mandatory calls to other dynamically-dispatched methods. Compared to these related
ideas, to the best of our knowledge our work is the first to consider greybox specifica-
tions as a mechanism to decouple verification of web services without exposing all of
their implementation details. Secondly, most of these, e.g. Shaner, Leavens, and Nau-
mann [15] use the refinement of Hoare logic as their underlying foundation. This was
insufficient to tackle the problem that we address, which required showing refinement
of (a variant of) linear temporal logic. Thus adaptation of much of their work was not
possible, although we were able to adapt the notion of structural refinement.
Specification and Verification Techniques for Web Services. The technique pro-
posed by Bravetti and Zavattaro [33] for determining whether the behavioral contract
of a service correctly refines its desired requirements in a composition of web-services
is closely related and complementary to this work. The main difference between this
work and the current work is that we verify refinement of greybox specifications by
service implementations that allows us to reason about temporal policies, while hid-
ing much of the implementation. However, we foresee a combination of our work and
Bravetti and Zavattaro’s work for determining fitness of a service implementation in a
desired composition of web-services.

Some approaches have recently been proposed to verify contracts for web services,
as seen in the works of Acciai and Boreale [34], Kuo et al. [8], Baresi et al. [6],
Barbon et al. [5], etc. These ideas focus on verifying the behavioral contracts as defined
by the externally visible interface of the web services, whereas our work provides a
principled, modular technique for verifying such policies that require inspecting the
web service implementation to a limited extent.

Castagna, Gesbert and Padovani present a formalism for specifying web services
based on the notion of “filtering” the possible behaviors of an existing web service to
conform to the behavior of some contract [7]. These filters take the form of coercions
that limit when and how an available service may be consumed. These coercions per-
mits contract subtyping and support reasoning in a language-independent way about the

www.manaraa.com

13

sequence of reads and writes performed between service clients and providers. Their
contracts are intended to constrain the usage scenarios of a web service, whereas the
present work describes a modular way to specify the observable behaviors that occur
inside service implementations.

Bartoletti et al. [35] provide a formalization of web service composition in order to
reason about the security properties provided by connected services. While they ignore
policy language details, our work shows how the amount of overhead used to relate
specifications to policies depends on the level of detail in the policy language. Further-
more, we believe greybox reasoning grants real benefits in readability and modularity
over their type system. We view later work developing executable specifications for
design of web services [36] as possible future work for Tisa.

Another approach [37] proposes an architecture to enforce these access policies at
component web services, but again the work is tightly coupled to the WS-SensFlow and
Axis implementations. Srivatsa et al. [38] propose an Access Control system for com-
posite services which does not take care of the Trust in the resulting service oriented
architecture. Skalka and Wang [39] introduced a trust but verify framework which is
an access control system for web services, but they do not provide temporal reasoning
for the verification of policies. By recording the sequence of program events in tem-
poral order, Skalka and Smith [40] are able to verify the policies such as whether the
events were happened in a reasonable order, but the mechanism does not support decou-
pling the model and the implementation. Other approaches [41, 42] either do not have a
formal model supporting them or are tightly coupled with implementations.

Future Work and Conclusions

We have designed Tisa to be a small core language to clearly communicate how it allows
users to balance compliance and modularity in web service specification. However, our
desire for simplicity and clarity led us to leave for future work many practical and
useful extensions. The most important future work in the area of Tisa’s semantics is
to investigate refinement of information flow properties. It would also be interesting to
investigate the utility of Tisa’s specification forms for reasoning about the composition
of web services.

Verifying web services is an important problem [7, 5, 6, 8, 9], which is crucial for
wider adoption of this improved modularization technique that enables new integration
possibilities. There are several techniques for verifying web-services using behavioral
interfaces, but none facilitates verification that requires access to internal states of the
service. To that end, the key contribution of this work is to identify the conflict between
verification of temporal properties and modularity requirements in web services. Our
language design, Tisa, addresses these challenges. It allows service providers to demon-
strate compliance to policies expressed in an LTL-like language [14]. We also showed
that policies in Tisa can be verified by clients using just the specification. Furthermore,
refinement of specifications by program ensures that conclusion drawn from verifying
policies are valid for Tisa programs. Another key benefit of Tisa is that its greybox
specifications [11] allow service providers to encapsulate changeable implementation

www.manaraa.com

14

details by hiding them using a combination of spec and refining expressions. Thus,
Tisa provides significant modularity benefits while balancing the verification needs.

References

1. Papazoglou, M.P., Georgakopoulos, D.: Service-oriented computing: Introduction. Com-
mun. ACM 46(10) (2003) 24–28

2. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services description lan-
guage (WSDL) 1.1. Technical report, World Wide Web Consortium (March 2001)

3. Barth, A., Mitchell, J., Datta, A., Sundaram, S.: Privacy and utility in business processes. In:
CSF’07. 279–294

4. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral interface
specification language for Java. SIGSOFT Softw. Eng. Notes 31(3) (2006) 1–38

5. Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-time monitoring of instances and
classes of web service compositions. In: ICWS ’06. 63–71

6. Baresi, L., Ghezzi, C., Guinea, S.: Smart monitors for composed services. In: ICSOC ’04.
193–202

7. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services. In: POPL
’08. 261–272

8. Kuo, D., Fekete, A., Greenfield, P., Nepal, S., Zic, J., Parastatidis, S., Webber, J.: Expressing
and reasoning about service contracts in service-oriented computing. In: ICWS ’06. 915–918

9. Wada, H., Suzuki, J., Oba, K.: Modeling non-functional aspects in service oriented architec-
ture. In: IEEE International Conference on Services Computing (SCC’06). (2006) 222–229

10. Parnas, D.L.: On the criteria to be used in decomposing systems into modules. Communi-
cations of the ACM 15(12) (December 1972) 1053–8

11. Büchi, M., Weck, W.: The greybox approach: When blackbox specifications hide too much.
Technical Report 297, Turku Center for Computer Science (August 1999)

12. Back, R.J.R., von Wright, J.: Refinement calculus, part i: sequential nondeterministic pro-
grams. In: REX workshop. (1990) 42–66

13. Morris, J.M.: A theoretical basis for stepwise refinement and the programming calculus. Sci.
Comput. Program. 9(3) (1987) 287–306

14. Edmund M. Clarke, J., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cambridge,
MA, USA (1999)

15. Shaner, S.M., Leavens, G.T., Naumann, D.A.: Modular verification of higher-order methods
with mandatory calls specified by model programs. In: OOPSLA ’07. 351–368

16. Necula, G.C.: Proof-carrying code. In: POPL ’97. 106–119
17. Liskov, B., Scheifler, R.: Guardians and actions: Linguistic support for robust, distributed

programs. TOPLAS 5(3) (July 1983) 381–404
18. Gordon, A.D., Pucella, R.: Validating a web service security abstraction by typing. Formal

Aspects of Computing 17(3) (2005) 277–318
19. Rajan, H., Leavens, G.T.: Ptolemy: A language with quantified typed events. In: 22nd

European Conference on Object-oriented Programming (ECOOP 2008). (July 2008)
20. Clifton, C., Leavens, G.T.: MiniMAO1: Investigating the semantics of proceed. Science of

Computer Programming 63(3) (2006) 321–374
21. Igarashi, A., Pierce, B., Wadler, P.: Featherweight Java: A minimal core calculus for Java

and GJ. In: OOPSLA ’99. 132–146
22. Flatt, M., Krishnamurthi, S., Felleisen, M.: A programmer’s reduction semantics for classes

and mixins. In: Formal Syntax and Semantics of Java. Springer-Verlag (1999) 241–269

www.manaraa.com

15

23. Clifton, C.: A design discipline and language features for modular reasoning in aspect-
oriented programs. Technical Report 05-15, Iowa State University (Jul 2005)

24. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information and
Computation 115(1) (Nov 1994) 38–94

25. Rajan, H., Tao, J., Shaner, S.M., Leavens, G.T.: Reconciling trust and modularity in web
services. Technical Report 08-07, Dept. of Computer Sc., Iowa State U. (July 2008)

26. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification.
In: Proceedings of the First Symposium on Logic in Computer Science. (1986) 322–331

27. Buchi, J.: On a decision method in restricted second order arithmetic. Proc. Internat. Congr.
Logic, Method. and Philos. Sci (1960) 1–12

28. Barnett, M., Schulte, W.: Runtime verification of .net contracts. Journal of Systems and
Software 65(3) (March 2003) 199–208

29. Barnett, M., Schulte, W.: Spying on components: A runtime verification technique. In:
Workshop on Specification and Verification of Component-Based Systems. (2001)

30. Barnett, M., Schulte, W.: The ABCs of specification: AsmL, Behavior, and Components.
Informatica 25(4) (November 2001) 517–526

31. Wasserman, H., Blum, M.: Software reliability via run-time result-checking. J. ACM 44(6)
(1997) 826–849

32. Tyler, B., Soundarajan, N.: Black-box testing of grey-box behavior. In: FATES ’03, 1–14.
33. Bravetti, M., Zavattaro, G.: Towards a unifying theory for choreography conformance and

contract compliance. In: Software Composition. (2007) 34–50
34. Acciai, L., Boreale, M.: XPi: A typed process calculus for XML messaging. Science of

Computer Programming 71(2) (2008) 110–143
35. Bartoletti, M., Degano, P., Ferrari, G.L.: Types and effects for secure service orchestration.

In: CSFW. (2006) 57–69
36. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Semantics-based design for secure web

services. IEEE Trans. Software Eng. 34(1) (2008) 33–49
37. Wei, J., Singaravelu, L., Pu, C.: Guarding sensitive information streams through the jungle

of composite web services. In: ICWS ’07. 455–462
38. Srivatsa, M., Iyengar, A., Mikalsen, T., Rouvellou, I., Yin, J.: An access control system for

web service compositions. In: ICWS ’07. 1–8
39. Skalka, C., Wang, X.S.: Trust but verify: authorization for web services. In: SWS. (2004)

47–55
40. Skalka, C., Smith, S.F.: History effects and verification. In: APLAS. (2004) 107–128
41. Biskup, J., Carminati, B., Ferrari, E., Muller, F., Wortmann, S.: Towards secure execution

orders for composite web services. In: ICWS ’07. 489–496
42. Vorobiev, A., Han, J.: Specifying dynamic security properties of web service based systems.

In: SKG ’06. 34–34
43. Choueka, Y.: Theories of automata on ω-tapes: A simplified approach. Journal of Computer

and System Sciences 8(2) (1974) 117–141
44. Emerson, E.A., Lei, C.L.: Modalities for model checking: branching time logic strikes back.

Sci. Comput. Program. 8(3) (1987) 275–306

www.manaraa.com

16

A Appendix: Omitted Proofs

Lemma 3. If the atomic propositions in a specification S are P(S) and the atomic
propositions in program P are P(P), and P refines the specification S then P(S) ⊆
P(P) .

The proof of this lemma follows from construction of P and structural refinement rules
shown in Figure 7. The construction of P picks all potential web-method calls as propo-
sitions and the refinement ensures that all web-method specifications in S have a corre-
sponding web-method declaration in P.

Lemma 4. Let P ∈ program be given. If t′ is a path for P , then there are paths t′pre
and t′loop such that t′ = t′pre + t′loop, t′pre has finite length, and each (z′, δ′) ∈ t′loop
occurs infinitely often in t′loop.

Proof Sketch: If t′ has finite length, then let t′pre = t′ and t′loop be the empty path.
If t′ has infinite length, then since P has only a finite number of expressions, it must

loop at some point. Consider all the states that occur infinitely often in t′, and let t′loop
be the longest suffix of t′ that contains only such states. Let t′pre be the unique prefix of
t′ such that t′ = t′pre + t′loop.

Lemma 5. Let S be a specification and let P be a program such that S is refined by P .
Let t+ (zn−1, δn−1) be a path for S and let t′ + (z′n−1, δ

′
n−1) + (z′n, δ

′
n) be a path for

P . If δn−1 ⇒ δ′n−1, then there is some (zn, δn) such that t + (zn−1, δn−1) + (zn, δn)
is a path for S and δn ⇒ δ′n.

Proof Sketch: From the definition of path for P , we have that z′n−1 represents an
expression in P and that there is a control flow relation from z′n−1 to z′n. From the
derivation rules for expressions in programs, we have the following cases.

Case if-true: z′n−1 represents the if expression and z′n represents the true ex-
pression. Case if-false: z′n−1 represents the if expression and z′n represents the
false expression. Case seq: z′n−1 represents the first expression and z′n represents the
second expression in the sequence. Case def: z′n−1 represents the definition expres-
sion and z′n represents the second expression in the variable definition. Case refining:
z′n−1 represents the refining expression and z′n represents the body expression of
the refining expression. Case web-method call: z′n−1 represents the web-method
call expression and z′n represents the body expression of the web-method.

From the assumptions we have that S is refined by P . From the refinement rules we
have that for each expression represented by z′n−1 and z′n above there is a corresponding
expression sem−1 and sem in S and the structure of these expressions and their relative
order is identical. By the construction of the FSM (Figure 6) we have that for each case
above corresponding to sem−1 and sem there is some state zm−1 and zm in Z and
(zm−1, zm) ∈ R. Thus tm−1 = t′m−1 + (zm, δm) is a path for P . Also for all cases
except web-method call, there are no new atomic propositions corresponding to z′n and
zm in program and specification, thus δm ⇒ δ′n is vacuously true.

For the case web-method call by the construction of the FSM (Figure 6), we have
that the new set of propositions δm = {m@w}. From the refinement rule for web-
method call, we have that identical web-method call occurs in the program. From the

www.manaraa.com

17

definition of a path for P , we have that for each such occurence of a web-method call
the new of propositions δ′n = {m@w}. Thus δm ⇒ δ′n holds.

Proof of Lemma 1. Let P ∈ program and S ∈ specification be given. If P refines S,
then for each path t′ for P there exists a path t for S such that t v t′.

Proof Sketch: Suppose P refines S. Let t′ be a path for P .
The proof is by transfinite induction, using the various cases discussed in Figure 7

that could generate t′. The well-ordering on paths that is used is that t1 < t2 if and only
if t1 is a finite, proper prefix of t2.

Base case: Let t′ be the empty path. Then by definition of refinement, the empty
path for S is refined by t′, so we can choose t as the empty path.

Inductive case: Let t′ be a non-empty (and potentially infinite) path for P . We as-
sume inductively that for all t′1 < t′ there is some path t1 for S such that t1 v t′2. We
must show that there is some path t for S such that t v t′.

By Lemma 4, we can write t′ = t′pre + t′loop, such that t′pre has finite length, and
each (z′, δ′) ∈ t′loop occurs infinitely often in t′loop. Let t′loop be chosen so that it is the
longest such path.

Now there are two cases, depending on whether t′loop is empty.
If t′loop is empty, then t′ = t′pre and t′ is finite. Since t′ is non-empty, we can write

t′ = t′n−1 + (z′n, δ
′
n). Now there are two subcases.

The first subcase is if t′n−1 is empty. Then by the construction of the FSM (Figure 6),
we know that the propositions that are assigned a truth value at the start of a path (i.e.,
δn) are top-level calls to web-methods. Suppose this is a call to a web methodm. But by
assumption the program’s m refines the corresponding web method in S, hence there
must be a zn and δn such that δn ⇒ δ′n, and so in this case [(zn, δn)] v [(z′n, δ

′
n)] = t′.

The second subcase is if t′n−1 is non-empty. By definition of < for paths t′n−1 < t′.
So from the inductive hypothesis we get a sequence tn−1 such that tn−1 v t′n−1. Since
t′n−1 is finite, it has a last element (z′n−1, δ

′
n−1) and t′n−1 = t′n−2+(z′n−1, δ

′
n−1). Since

tn−1 v t′n−1 it must be that tn−1 is finite and non-empty. Hence there is some tn−2 such
that tn−1 = tn−2 + (zn−1, δn−1). Since tn−1 v t′n−1 it must be that δn−1 ⇒ δ′n−1.
Thus by Lemma 5, there is some (zn, δn) such that tn−2 + (zn−1, δn−1) + (zn, δn) in
is a path for S and δn ⇒ δ′n. Letting t = tn−1 + (zn, δn), we then have t v t′. This
ends the proof of the second subcase, when t′loop is empty.

If t′loop is non-empty, we can write it as t′loop = (z′n+1, δ
′
n+1) + t′pp. Since t′pre is

also non-empty, we can write t′pre = t′n−1 + (z′n, δ
′
n). By the inductive hypothesis we

have that there is some tpre such that tpre v t′pre. As above we can write tpre = tn−1 +
(zn, δn), and by the refinement relationship, we know that δn ⇒ δ′n. Thus by applying
Lemma 5 again, we have that there is some (zn+1, δn+1) such that tn−1 + (zn, δn) +
(zn+1, δn+1) is a path for S and δn+1 ⇒ δ′n+1. Thus tn−1 +(zn, δn)+(zn+1, δn+1) v
t′n−1 + (z′n, δ

′
n) + (z′n+1, δ

′
n+1).

Now t′loop must be made up of some repetitions of a prefix t′2 of t′loop that starts with
(z′n+1, δ

′
n+1). This path t′2 is also finite, and so we can find a subpath t2 in S such that

t2 v t′2, as above. We can then paste these together to produce a path t in S such that
t v t′.

www.manaraa.com

18

A.1 Omitted Details on Soundness of Policy Verification

The key idea in the proof of soundness for policy verification is to give a state explo-
ration technique to verify that the policy is satisfied by the state machine constructed
by the construction algorithm in Figure 6. Furthermore, we show that the output of our
construction algorithm is a valid finite-state program.

Lemma 6. Given a policy φ ∈ Φ(S) one can build a Büchi automaton B(¬φ) such that
the language accepted by that automaton L(B(¬φ)) is exactly the set of computations
satisfying the formula ¬φ.

The proof of this Lemma automatically follows from the proof of Theorem 2.1 and
3.3. given by Vardi and Wolper [26, pp. 4,6].

Given a finite state program (Z, s0, R, ∆) one can construct an equivalent Büchi
automaton (σ, Z, s0, %, ∆), where σ = 2P(S), z′ ∈ %(z, δ) iff (z, z′) ∈ R and δ =
∆(z) [26, pp. 5].

Lemma 7. Given two Büchi automata (σ, Z, s0, %, ∆) and B(¬φ) one can construct
an automaton that accepts L((σ, Z, s0, %, ∆)) ∩ L(B(¬φ)).

The proof of this Lemma also automatically follows from Lemma 3.1 of [26],
which in turn follows from [43].

From Lemma 6 and 7 it follows that given a finite state program (Z, s0, R, ∆)
and a policy φ ∈ Φ(S), one can construct an automaton that accepts a language, which
is empty when the finite state program satisfies the policy. This emptiness property is
known to be solvable in linear-time [44].

Lemma 8. For a specification S, the production relation of Figure 6 constructs a
valid finite-state program.

Proof Sketch: The key intuition behind the proof of this lemma is that from
the hypothesis of the rules (IF), (SPEC), in Figure 6 (and other rules in our techni-
cal report) one can see that each of these rules generates a finite number of states.
Furthermore, each of these rules maintains the structure of the finite-state program.
The rule (WEB METHOD CALL) is different as it can potentially allow recursion, and
thus generate potentially infinite number of states. However, this is accounted for by
the (WEB METHOD CALL FSM 1) and (WEB METHOD CALL FSM 2) rules, which check
membership in the table NT passed into the rule. The (WEB METHOD CALL FSM 1) rule
requires that there is not already a state associated with the web method being called in
NT , and ensures that subsequent relations use a table (NT ′ in the rule) that has the partic-
ular method defined. If there is a definition in the table, the (WEB METHOD CALL FSM 2)
rule, is used, which does not add a new state but simply reuses the one in the table. This
makes sure that the state for a particular web method call is only added to the FSM
once.

Proof of Lemma 2 : Given a specification S and a policy φ ∈ Φ(S), the automaton
F(S) ∩ B(¬φ) accepts a language, which is empty when the specification satisfies the
policy.

Proof Sketch: The proof follows from lemma 6, 7, and 8.

	2009
	Tisa: A Language Design and Modular Verification Technique for Temporal Policies in Web Services
	Hridesh Rajan
	Jia Tao
	Steve Shaner
	Gary T. Leavens
	Recommended Citation

	Tisa: A Language Design and Modular Verification Technique for Temporal Policies in Web Services
	Abstract
	Disciplines
	Comments

	tmp.1563548198.pdf.b8LcG

